jack daniels classifies running training into four categories (see his lectures here). i’ll summarize here because i found it to be a helpful framework for building my own training program for the new year. each type adheres to the same general principle of minimum effort for the maximum gain. he says if you want to improve physiological function, you want to stress it. but you want to stress it at the lowest intensity of stress
easy runs
build aerobic base and ability to do higher volume runs
train at max stroke volume to gradually create cellular adaptations
mitochondrial density
fat oxidation
60% of max heart rate
threshold training
build endurance through pushing the lactate threshold. blood lactate accumulation happens at difference paces / effort levels. so goal is to push accumulation farther out relative to effort
accumulation is function of how much produced vs how much cleared
past the threshold is where speed of running beyond which blood lactate rises continuously instead of plateau
at or below threshold = steady state lactate accumulation (not rising)
train at threshold means training at pace where any faster results in lactate rising continuously
82 – 88% of mhr
threshold is basically pace you can hold for roughly 1 hour
interval
purpose is to maximize aerobic power. how much blood is delivered and how much of that o2 is converted to energy
aerobic power is approximated via vo2 max
o2 consumption measured by millilitres of oxygen per kilogram of the body mass per minute (e.g., mL/(kg·min)).
vo2 max is max rate of oxygen consumption
97 – 100% of MHR
repetition
kind of like intervals (honestly not sure why he called this out separately), except the focus is on even higher intensity followed by long rest periods. purpose is to improve running economy
as you go from easy running to repetitions, the main variables within a training session that change are intensity and volume. easy runs are high volume, low intensity. on the other ends, repetitions and intervals are high intensity but low volume. this is a helpful lens through which to view running programs because the proportion of a type of training in a running program tells you the type of race or performance it’s effective for
while i really like doing threshold training, my current volume of training is low so right now i feel like i’m sacrificing base building when i really ought to aim at building more volume and developing a larger base. right now i do higher intensity training twice a week, but i may dial that back to just once a week and dedicate my other days to easy runs. it’s hard for me to do two intense sessions a week without feeling the impact on my joints / ligaments, particularly my right knee – which tells me i should probably scale back the intensity and just focus on volume
there’s a saying that all problems in computer science / programming can be solved by another level of indirection. in this chapter the pratt parser is a great example of that when it comes to parsing expressions such as
simple numeric literals i.e 1 or 2
single operand / prefix expressions like -1
binary expressions like 1 * 2 involving numeric, equality, comparison, or logical operators
any complex combination of the above with groupings
back in jlox, expression parsing was based on recursive descent expressions recursive descent. in this chapter, the parse sequence is driven by a special function called parsePrecedence. two new abstractions (the parse rule table and the rule lookup function) come together in the parsePrecedence function which is going to be the new entry point to expression parsing
here’s a truncated example of some parse rules in our parse table. it’s a mapping of token types to a group of metadata (prefix parser, infix parser, and precedence level)
unary is the prefix parsing function for the minus token. binary is the binary parsing function, and the precedence level of PREC_TERM. this is the getRule function that, given a token type, can retrieve that metadata
the relevant parse function for a given token consumed via advance is fetched dynamically from the parse rule table. so given a token type of NUMBER for parser.previous.type, the first thing parsePrecedence attempts to do is locate the prefix function for that token
other prefix functions may themselves call back to parsePrecedence such as grouping if a left parenthesis is encountered
for chained expressions involving infix operators i.e 1 + 2 + 3, the current precedence level is used to continue consuming the following expressions in a left-associative manner. so parsing 1 + 2 + 3 becomes ((1 + 2) + 3)
addition of new tokens involves setting a new token rule for those tokens and their metadata (prefix operator, infix operator if it applies, and precedence level). the parsePrecedence function automatically obeys the precedence levels during parsing. in jlox, parsing precedence has to be carefully managed by ensuring that it’s reflected in the call sequence (top down execution where lower precedence parse functions calling higher precedence ones)
unlike recursive descent top down parsers where the syntax reflects both the grammar and precedence order (lower precedence parse targets always invoke higher precedence ones), it’s harder to visualize the call sequence in a pratt parser because the exact call sequence is only apparent during runtime through calls to parsePrecedence (which decides how far to parse on the current precedence). nevertheless this seems like a more extensible / configurable way to manage expression rules
i went for an easy run this morning and was thinking about the purpose of training and zone 2. a cornerstone of pretty much any aerobic training program is the easy (zone 2, 60-70% of max heart rate or 5-6 RPE) run. there’s usually the long easy run combined with shorter easy runs throughout the week. when i first started training for longer races (15k), i thought the sole purpose of these longer runs was to progressively overload until i’m comfortable running the race distance. so if i’m training for a 15k, i’m increasing my ability to sustain a comfortable aerobic effort little by little until i’m able to do it for my desired distance.
if i’m training for a 5k, there must not really be a purpose of doing these longer runs. right? there’s a principle in training called specificity – basically it means you tailor your training to the specific energy system and skills that you are trying to improve. so if you’re trying to become a better long distance runner, run long distances. if you’re trying to become a better sprinter, sprint! this seems pretty intuitive, except what’s not obvious is that if you want to become a better runner at any distance, you also want to incorporate long runs!
base endurance
i’m not really an expert on physiology and there’s a ton of resources covering the benefits of long runs, but my layman understanding of this so far is that doing easy runs at roughly 60% of MHR is what allows you to
build your heart muscle (increasing stroke volume or how much blood can be pumped per beat) with minimal effort
these improvements are primarily a function of duration. so, generally speaking, the longer you are working your heart at that intensity the more of the benefits (up to a point, we can’t run forever without risking injury).
allow your body (muscles, bones, ligaments, joints, etc) to gradually adapt to higher volume
by doing easy runs at higher volume without injury, you unlock higher volume of more intense workouts into your schedule. someone who is comfortably running 30 miles a week can introduce a couple of 5k intense threshold runs into the week to build even more speed and endurance. if you’re doing 5 miles a week, there’s just no room for that. nothing wrong with running 5 miles a week, but my point here is to illustrate the relationship between steady state volume and training opportunity
the minimal effort point here is pretty key. you can train a far higher intensities to build your heart muscle, but turns out your hearts current maximum stroke volume is reached at 60% of MHR. so if you do a full out run, your stroke volume is still the same – you’re just expending more energy for the same heart muscle building benefits. also since doing high intensity runs all the time means you likely sacrifice on volume aka less time overall in this zone. people are also all different – in some situations there may be runners that can do very high volume and intensity and that works for them. i know that’s not me 😀
there are also numerous other related responses that support this gradual volume buildup of the heart muscle, a couple that i notice come up often are:
increase mitochondrial density (mitochondria generate energy in a cell using oxygen and glucose) so higher numbers of mitochondria means being able to use more of the available oxygen and glucose during aerobic activity
increase in ability to use fat stores as fuel instead of glycolysis, using glucose and oxygen (able to run longer)
so overtime, spending a lot of time in easy runs builds the heart muscle and its ability to pump out blood and increases your capacity to make use of that higher volume of blood per beat thanks to cellular level changes like mitochondrial density (more efficient). how this translates to races is that you’re able to do them at any distance without getting as tired because your aerobic system is more efficient. and because of the gradual buildup in your overall muscular strength you can run at higher volumes at a comfortable pace per week. this higher mileage then unlocks higher quality / higher volume intensity training.
jack daniels, a well known running coach, often says that you should know the purpose of your training. why are you running today? what is the purpose of this long run? well there’s the purpose of long runs. you do long easy runs because it builds the very foundation of your aerobic performance.
back in January this year i ordered a refurbished dyson v11 off newegg (the full model name is V11 Animal+ Cordless Vacuum) for about $300 (new ones were close to $600) and it was working great up until end of November last month. the problem was that the trigger had stopped working – it wasn’t springing back into its normal position after depressing and wouldn’t turn on the vacuum anymore.
turns out this broken trigger on the v11 is a well known issue and it’s caused by a weak plastic arm / lever on the trigger assembly. it’s frustrating because why the hell would you made such a high use component that get subjected to repeated force out of thin plastic instead of metal? or at least make the plastic arm thicker so it doesn’t just crack in less than a year of use.
thankfully because this is such a common issue there were repair tutorials online and spare parts available through ebay. i was able to finally finish the repair yesterday and in this post i’ll share what resources i used and some tips (both for others and for myself in the future if i need to do this again…)
here’s the youtube video that documents the disassembly process and required tools. just a heads up, the trigger mechanism is embedded pretty deep and requires basically an entire disassembly of the vacuum. the video is less than five minutes long but i think it took me closer to 45min to get it all apart.
tips
you WILL need all the tools mentioned in the video. definitely the long torque screw and pliers. you won’t be able to remove the trigger assembly without a pair of pliers (i tried). it will also be helpful to have some kind of gripper (things that look like tweezers but for electronics, most electronic repair tool kits will come with this) to grip on to wires later during re-assembly
buy a new complete trigger assembly with metal switch (or at the very least a metal trigger piece to replace the plastic trigger with). yes it’s pretty funny that there’s apparently an entire market providing more durable switches for the v11 than dyson themselves. in my first go at this, i did what the video suggested and tried gluing the broken trigger with superglue. i do not recommend doing this because the trigger ended up breaking immediately again and i had to repeat the entire process. maybe i didn’t let it cure long enough. maybe my super glue wasn’t super enough. whatever, just save yourself the trouble and replace the entire assembly. below is an image of one i found on ebay (note that it says v10 – it’s also compatible with v11).
during reassembly, there will be a point where you need to straighten / bend the metal ends of the electric connectors in order to pass it through various parts of the vacuum. you’ll know what i’m talking about if you end up going through the full disassembly. try not to bend/re-bend them too many times because you can easily break off the metal ends (see below)
in my first pass at this after i had glued the trigger back together, i actually broke off the metal piece by accident when trying to bend it back and then spent over an hour trying to re-solder it back on. i also have no idea how to properly solder and ended up burning a hole in my table cloth. anyway when you’re re-connecting those metal connectors back, use your pliers to adjust them to be close to 90 degrees (as they were before you had to remove them) but it honestly doesn’t have to be perfect. just use the screws to tighten them against the motherboard.
in chapter 16 for the lox vm, the scanner implementation takes on a completely different approach compared to jlox. when we implemented jlox, the scanner did a full scan of the source file and then created all the tokens in memory for the parsing phase
in the C implementation, the file is still read but we don’t create a separate list for all the tokens by doing a full read of the file. instead the scanner refers directly to the source and we only create as many tokens as necessary (no more than 2 tokens since lox is a LLR1 type grammar that only requires a single token lookahead to uniquely identify a lexeme). this is a lazier and more memory efficient approach.
for example, here’s the scanner struct and how it’s initialized
start refers to the beginning of a lexeme (say, an identifier)
current is the current character being scanned
there’s also some additional metadata like line number for debugging support
and this is the Token struct for representing a complete lexeme
typedef struct { TokenType type; const char* start; int length; int line;} Token;
start is a pointer to the source – again we’re not allocating additional memory to hold token information
type is our special enum to things like TOKEN_IDENTIFIER
with the scanner and the token structs in place, the compiler drives the actual changes to these objects as it scans as much of the source code as it needs (and constructs tokens) to emit byte code sequences
ObjFunction* compile(const char* source) { initScanner(source); Compiler compiler; initCompiler(&compiler, TYPE_SCRIPT); parser.hadError = false; parser.panicMode = false; int line = -1; advance(); while (!match(TOKEN_EOF)) { declaration(); } ObjFunction* function = endCompiler(); return parser.hadError ? NULL : function;}
calls to advance and declaration both will eventually call out to scanToken which will make use of the scanner to read and construct the next token. for example if the token is a number, the compiler will emit two byte codes via a call to emitConstant(NUMBER_VAL(value));
the entire sequence of bytecodes is built this way, the compiler driving the scanner forward and emitting byte code sequences on the fly.
my team and i recently completed a database migration from mongodb to postgresql for one of our rails apps. the service is a graphql api built on rails 7 and is backed by a mongodb database (m40 cluster managed through mongo’s atlas platform) with ~500gb of data and we performed a live zero-downtime migration to a db.m5.2xlarge RDS running in our own aws account . the application is organized like a pretty standard rails app. all data is represented by rails models and data access is done through an object mapping layer using mongos object document mapper (ODM) mongoid.
the requirements for this project were pretty straightforward
stop using mongo
dont take our service down to do an offline migration (given the amount of data we needed to move, the maintenance window we would need would’ve been way too long anyway based on some of our initial test)
our high level approach was to use the double writing pattern by dual writing to both data stores and put reads behind dynamic feature flags, backfill the tables one collection at a time, switch over the reads to the new database and then cut off the old read and writes.
this is a very common technique in service to service migrations when teams undertake monolith to microservice transitions (which were all the rage five to ten years ago, but the trend is reversing as of late) and the same process can be applied to switching data stores within the same service. the new reading/writing code in the service hit a new storage instead of the new api / service.
setup phase
we started by setting up an initial connection to postgres and added some basic tooling
set up the postgres database and the rails integration. our infrastructure teams spun up our new postgres instance on RDS sized comparably to the current storage on atlas. in the rails app, we setup active record ORM alongside the existing mongoid ODM and updated both our development and CI setup to spin up a postgres image
set up data transfer / backfilling utility scripts that extract mongo document data for a given collection and transform it into an postgres compatible format and inserted it into the postgres database. for example, nested documents become normalized foreign key relationships
set up feature flagging (we used flipper) to dynamically control the reading switch (double writing was not behind switches but we made sure to wrap our new writes with catch-all exception handling to never interrupt requests
double writes
we divvied up most of the work by resource types and tackled them in the order of some combination of entity complexity (lots of relationships, super nested) and data volume (getting an early start on the largest collections was important since we had deadlines to hit).
for each resource in the system, we did the following
create active record equivalents of the current ODM models. so this means bringing over model level unit tests, validations, and any database level constraints. to uniquely identify migrated data, we made sure to include a mongo_id column on every new table
set up dual writes. most of the writes happen through graphql mutation resolvers at the graphql API layer so this involves adding adjacent active record write logic.
duplicate existing unit and functional tests to cover the new models and code
set up the backfilling code. the shared migration script was sufficient for most of our data (simple batch read, transform, bulk insert), but a handful of our models with more complex entity relationships necessitated their own migration logic
backfill and read rollout
once dual writing was enabled for a while and we’re confident there are no issues with the new data, run the backfill scripts. depending on the collection, this took anywhere from minutes to days
upon backfill completion, verify the successful migration using a custom built data verifier script that ensures that all the mongo documents were successfully transferred. this script knew how to compare both simple flat docs and ones with very nested relationships by using rails model level reflection API
finally, switch the reads from mongo to postgres. this was done through flipper so no additional deploys are necessary
cleanup
once all dual writing is setup and all reads are done against postgres, remove the double writing and only keep our postgres active record reads and writes.
remove all traces of mongo
celebrate!
challenges
no project is without its challenges / setbacks and wow we had a number to deal with (and overcome!). we had issues on every stage of the sdlc
coordinating with other teams making changes to the service. we had to enact a code freeze since we were running into instances of people introducing new writes without the flags/dual writing stuff we required
wading through hard to understand business logic areas with low test coverage. we needed to create active record equivalents of a lot of writes, but some writes were fairly complex (very stateful, lots of conditions) and involved a coordination of multiple domain models
keeping the new active record models ,tests, scripts isolated. we can’t just delete the current application code so the new models needed to live alongside the old ones. since we wanted to preserve the model names as possible but you cannot have two models of the same name in models/ so we introduced a postgres namespace across the board to house the new code. this was a fantastic solution that made it both easy to add new models and delete the old ones later
database schema migration automation problems. we initially were running the new rails schema migrations by hand but when we switched over to automating the schema migration using k8s/helm, we accidentally made migrations run one off jobs (instead of pre-release hooks). as a result, we had deploys still succeeded despite failing migrations
some of our collections are large, so our backfill scripts need to run anywhere from several hours to several days. this increases the likelihood of running into issues mid data transfer, so it’s important for scripts to be idempotent and resumable. for the idempotent part, we did this by adding mongo_id primary key reference to all of our postgres tables to represent the identity of the mongo record migrated (in most backfilling instances with only a couple of exceptions, we skip the insert based on the mongo id if it’s already migrated). for resumability, during migration we always read mongo documents ordered by their primary key (lucky for us the first four bytes of the 12 byte id is the creation timestamp) and we log out the last key in the current batch during migration processing as a checkpoint to use later as a cursor
set off alerts when running backfills because of elevated read / writes against postgres which were in the call path of all existing requests. we ended up creating a read only mongo replica off of our primary in atlas to use for our backfilling. unfortunately, while this solved the contention issue we introduced new problems around data consistency. for example there was an instance where i ran the backfill against an outdated replica and ended up inserting stale records into the new database. luckily the verifier detected missing records and i was able to drop the table and re-run the backfill with a fresh / up to date database instance
missing mongo key constraints and existence of duplicate records. we had a number of collections containing dupes due to missing uniqueness indices, so when we added the appropriate uniqueness constraints to the new tables in postgres, the backfilling process blew up because the mongo data was bad. this required some data cleanup and one of my teammates wrote a handy de-duping script using mongos aggregation API to identify and remove dupes by gathering dupes for a any given document key combination into lists and then keeping the latest by purging the dupes.
one minor snafu we ran into this was that the aggregation code does a lot of the grouping of documents in memory on a node and in one instance this caused a memory spike that impacted avg performance while the script was running
based on the logs, we seem to get a good number of duplicate insert errors due to race conditions of requests attempting to modify the same resource at the same time, which probably explains why we had so many dupes in the old database to begin with. most of these cases can be ignored but it would be good to figure out why they’re happening so often
bad new data being inserted into our postgres database due to incorrect new code. for example, there was a situation where we were writing a UTC offset attribute into mongo through the ODM and when this got carried over to the active record class, it was only writing positive UTC offset values and excluding all negative offsets due to a bad guard clause i added. oopsie
we also had minor and more suble bugs like timestamps not being properly updated. for example in active record we needed explicit .touch to update when no attributes changed but clients expected an updated timestamp. this was happening out of box with mongoid
data divergence happening in dual writing code during upserts that were caught by the verifier. for example, some records had fields that accrued values over time, but once dual writing got introduced and it got executed by a new request, only the most recent data in the payload is inserted into the new database (the original values accrued on a field in the mongo database were not carried over). unfortunately, this data gap wasn’t addressed by our backfilling because our backfilling code skips dual written records, so the historical values were never carried over for that record during that process.
to illustrate this with a scenario: lets say a mongo record was created before dual writing and it’s field values gets value 1. time passes. we release the dual writing code. a new request wants to upsert the same record but this time with value 2. two writes happen: one to mongo, which ends up with [1,2] and one to postgres, which only has [2] (the most recent value).
to fix these issues, we wrote one off data sync / repair tasks to fix these diverged records. this was pretty much an issue for any record that performs upserts and whose backfilling strategy was an insert_all (skips on conflict) are candidate for divergence.
contending with ongoing performance problems of the service trying to differentiate between whether degraded performance impacted by our new code or what was already there (turns out a little bit of both!)
on rolling out a read for a single high traffic collection, the entire service went down for a solid 5-10 minutes where i couldn’t access the flipper UI because none of the pods were responsive. turns out this was caused by missing indexes that was causing RDS CPU to be pegged at 100% due to full table scans happening in RDS against the collection
we did a pretty great job managing these issues as a team and right now we’re fully on postgres and it looks like it’s running smoothly so yay!
so there’s a interesting property between the XOR operation and mod 2
turns out, the xor (^) of any sequence of bits is equal to the sum of those bits modulo 2
for example
1 ^ 0 ^ 1 ^ 1 is the same as (1 + 0 + 1 + 1) % 2
if you take this step by step, the xor side:
1 ^ 0 = 1
1 ^ 0 = 1
1 ^ 1 = 0
0 ^ 1 = 1 (answer)
the modulo side:
1 + 0 + 1 + 1 = 3
3 % 2 = 1
why?
lets look at the truth table for XORs using two bits
left bit
right bit
xor result
0
0
0
0
1
1
1
0
1
1
1
0
xor table
XOR is an exclusive OR, so it will only be 1 if there’s ONLY ONE bit that’s on. if there’s two bits or no bits, the result is 0. what other operation of two operands where the result is 0 given 0 and 0 and 1 and 1? modulo 2!
this equivalence exists because when we’re dealing with two bits, their sum is 2. 2 mod 2 is 0. when both bits are 0, the sum is 0 and 0 mod 2 is 0. when only one of them (and odd number) is on, we always get a sum of 1 and 1 mod 2 is 1
even though we’re only looking at two bits, this actually generalizes to any sequence of bits because it turns out that XORing any sequence of bits results in 0 when there is an even number of 1 bits and 1 when there is an odd number of 1 bits (or none)
hex notation shows up a lot in computing so it’s really useful to understand. it’s really hard though to learn to take your base 10 lens off because that’s what we’re so accustom to!
in base 10 position notation, each place represents up to 10 digits (0-9). this is really handy because when we go beyond 9, we can shift over and use a new position to denote 9 + 1. so the value of each position in a base 10 integer is essentially the radix (10) raised to the power of the position index which starts at 0.
for example, the digit symbol 8 below represents the value 8 because every digit is below 10. once you most leftward to a new position, each digit actually represents 10^1 all the way to the leftmost position 10^n.
the same set of digits for a base 16 system ends up looking the same, but the actual value is different. below, 128 in base 16 is 296. from right to left, 8 + 32 + 256 = 296. this is because rather than representing 10 symbols in each place, hex holds 16 symbols
in base 10, each place holds one of 0,1,2,3,4,5,6,7,8,9. in base 16, each place holds one of 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F where A = 10 (base 10), B = 11, C = 12, D = 13, E = 14, F = 15. so A in base 16 is equivalent to 10 in base 10. when looking at this for the first time, it looks wild because you’re so accustomed to equating the symbols “10” with the value “10” (both in base 10), so switching bases really requires you to decouple the numerical symbolic representation (may or may not be base 10) from the value (which you still want to think about and write in terms of base 10).
one of the handiest things about hex and why it’s commonly used in computing is its relationship with binary or base 2 notation. machines encode all information in binary format. compared to decimal and hexadecimal, binary notation only holds 2 values in each positional index (0 and 1). the interesting relationship, though, between binary and hexadecimal is that 16 is actually 2 raised to the 4th power. put another way, we can represent any single hexadecimal value with four binary values and vice versa. this makes converting values between the two bases much easier than converting between binary and base 10. i highly recommend checking out this khan academy video to gain a intuition behind the why
thanks to this relationship, we can use hex as a far more compact literal representation of binary values. while binary is the most efficient for computers, writing in hex makes it far easier to write and read for humans. for example, the bits 1111 can be represented with just F since they both represent the value of 15 (decimal). four bits can represent up to 15 values. what else represents 15 values? a single hexadecimal digit! and since hex is a power of 2, we can expand this beyond just four bits – we can pretty much use hex to quickly convert really any sequence of bits in most computing architectures whether they’re 32bit (8 groups of 4 bits) or 64bit
a common task i do is open bash in a container to inspect the file system….
but what happens when there is no shell at all in the image?
for example
FROM scratch
WORKDIR src
COPY README.md .
and if i run docker build . -t minimal-image to build the image, how would i confirm the contents were indeed copied over?
if i run docker run minimal-image:latest bash, i get
docker: Error response from daemon: failed to create task for container: failed to create shim task: OCI runtime create failed: runc create failed: unable to start container process: exec: "bash": executable file not found in $PATH: unknown.
this makes sense because the scratch image doesn’t actually contain anything. it’s not shipped with a bash interpreter.
so what to do…
the workaround is to use the docker export command. this requires a container, so first build the container
and then we can finally export this to a .tar file
docker export minimal-container -o out.tar
now lets unzip/decompress the tar into a directory called tmp. if i don’t specify a destination directory, the contents will get unzipped directly into my current directory, which includes my host files! don’t want that 🙂
mkdir tmp && tar -xzf out.tar -C tmp
this gives me, with ls tmp
dev
etc
proc
src
sys
now before i had my WORKDIR image instruction to set the working directory to src right before my COPY instruction, and that is indeed where i find the file i copied.
anyway that’s how you inspect contents of an image without a shell!
bind mounts are what i’m accustomed to using for local docker dev. they’re the typical go to for being able to use host-native dev tooling to edit source code and ensuring that those changes are immediately reflected in the container environment. they work fine, for the most part.
my biggest issue with them has always been the speed on mac. every company i’ve worked at provisions mac’s for dev machines and the biggest reason for the slowness is because on a mac, docker is actually running in a linux VM. afaik there is no native mac container technology – they’re built for linux. so docker makes this work by running a hypervisor using apples virtualization framework. virtualization is cool but it’s expensive.
when docker desktop starts up, it mounts paths like /Users into the virtual machine and makes that available to processes running inside the container. this is what allows source directories in the mac host machine to be bind-mounted. unfortunately, every i/o operation incurs an extra cost in mapping a read or write operation in the virtual machines virtual file system to a read or write on the actual host file system.
i don’t think there’s much you can do about this cost – it’s always going to be an extra level of indirection so it’s not going to ever match native, no-container i/o speeds. but there are some alternatives that i’m eager to try out in the future
dev containers is basically taking containerization to the extreme – what if your entire workflow / tooling was inside a container?!
docker released https://docs.docker.com/desktop/synchronized-file-sharing/ , this tackles this problem by asking the question “what if we can copy/sync file changes really fast into the container?” instead of forcing the vm to reach across file system boundaries
lately i’ve been going through crafting interpreters by bob nystrom using racket and its got me thinking a lot about code gen in java vs lisps. the book uses java and there’s some use of it to template out common patterns. it’s about as awkward as i expected it to look. but i’m not writing to pick on java – mostly to appreciate the special niche that lisp continues to occupy
in java, if you want to generate a set of classes, you have to write a class that can output strings that will ultimately represent a valid java program. at runtime, you may have a method called generateObject that accepts some arguments and outputs the blueprint of a class. the output will be strings or even files but they are not being generated and compiled at the same time. another stage of compilation on this outputted source will need to be performed.
i don’t mean to pick on java. this separation of code generation and compilation in meta-programming (meta because we’re using a program to produce more source code) is common in most statically typed languages.
dynamically typed languages and interpreted languages such as ruby and python support program generation and execution of the generated code both at runtime.
for example, ruby supports defining methods dynamically at runtime that becomes available to the rest of the system via define_method and it can even evaluate arbitrary ruby code using functions like class_eval. these definitions are parsed and executed at runtime.
however, any sufficiently complex program can only be represented as strings and thus the only way to manipulate them is as plain strings.
in both situations, whether dynamic or static, languages have
a representation of a program in a particular language that conforms to a special grammar, usually EBNF
a set of primitive data structures that can be manipulated at program runtime
and the actual program representation does not conform to the same structures as its data structures. in other words, the language does not allow the program itself to be treated as a data structure – because the literal representation of the program itself (that a programmer sees) is not a data structure but rather just text strings.
take ruby as an example
class Animal
def initialize(name, sound)
@name = name
@sound = sound
end
def make_sound
puts "#{@name} says #{@sound}!"
end
end
# Creating an instance of the Animal class
cat = Animal.new("Cat", "Meow")
# Calling the make_sound method
cat.make_sound
that’s a representation of a ruby program – in no way does that resemble any of the data structures in ruby such as arrays or dictionaries.
program source representations as part of a interpretation or compilation process do eventually undergo transformations (i.e class_eval) that turn plain source text into data structures that can be manipulated. for example, the lexing and parsing phases of compilers product syntax tree data structures that can in fact be expressed with the same primitive structures supported by the language itself.
the keyword here is “eventually”. the program as it is represented before any compilation or parsing occurs is not a data structure and cannot be manipulated as such. this is as true for ruby as it is for java
lisp
the one exception to this is lisp. the fancy academic word used to describe this unique position held by lisp regarding the discrepancy between the languages external representation and its data structures is homoiconicity.
lisp is homoiconic because lisp programs manipulate s-expressions and are also written in s-expressions.
here’s a simple demonstration using a dialect of lisp (racket scheme) where we define an original program (as a list) and then we transform the program literally before eval’ing it.
since our original-program is just a list, it can be manipulated like any other list using functions like car. notice here how there’s no distinction between a manipulated program and the surrounding program representation. it’s all just lists. that is code as data.
this power extends not just to arbitrary program eval and manipulation – lisp also lets you extend its syntax in new ways to support custom language features that are not built into the language. these are known as macros. again, since the language is made up of s-expressions, any new formulation or semantic of the language can likewise be expressed in s-expressions and can be expanded and eval’d as if they were any other data structure during runtime, without having to drop into a “compilation” stage that converts something more primitive like strings into an AST
the whole language is an AST!
i’ve long wondered what the yinyang symbol of lisp represented and it’s actually from structures and interpretations from MIT. the yin yang represents eval and apply in the metacircular evaluator from the textbook. the metacircular evaluator is basically a lisp interpreter written in lisp – it is lisp evaluating itself through the use of both eval and apply.
the expression problem states that it may be easy to extend data types in a program without modifying existing code and it may be easy to extend behavior in a program without modifying existing code, but not both. this limit, as far as i know, is a limit imposed by the design of the underlying programming language. i really don’t like the name of this problem because the issue isn’t just a matter of expression, it’s also one of modification. so maybe we should call it the expression-modification problem…
object oriented languages or languages that are oriented towards concepts like colocating data and behavior under class-like constructs tend to be better at allowing you to add new types to a system (provided they follow the same behavior contracts) without having to open up and modifying existing type. for example, if you have a set of data types representing cars and they’re all supposed to understand the method / message “accelerate”, you can easily add new cars with different acceleration behavior. however, the moment you need to add a new behavior that affects all existing cars (lets say a new method named “recall”), every single class will need to be opened and modified.
functional languages or languages that are oriented towards separating data and behavior tend to be better at allowing you to add new behavior to a system without having to modify existing code. using the same example as above, if you needed to add a new function, you just need to add a new function that handles all the various car types. however, if you need to add a new data type like a new car, now you need to open all of the existing functions to handle the new type.
from a practical standpoint, what this means is that choice of language matters depending on the problem at hand because the language orientation, if one exists, can either work with or against the programs natural architecture. for example, if you’re dealing with a problem with a handful of fixed data types and most of the growth is in domain specific behavior, a function oriented design may be more compatible.
for example, lets say you have a computing problem dealing with some fixed set of accounting related concepts that are stable and don’t change overtime. but stakeholders frequently need to perform different types of reports on these various types and these reports frequently evolve and change. with a more strict OO approach, the reporting behavior may be co-located with the domain objects but this means having to open up each one every time a new reporting behavior is added (OO languages make cross-cutting behavior sharing easier with inheritance, so, lets assume the worst case and that the concrete behavior of each new report needs to be specific to each type).
nowadays we have many “multi-paradigm” languages that allow programmers to choose the more suitable style or change it if it no longer fits, but i don’t think this solves the expression problem in so much as it forces the user to pick the side of the problem they want to have. lots of problem domains also grow on both axis (data types AND behavior) and it’s not always clear which one you’re dealing with, so the problem cannot always be avoided with more planning.
from my experience, it’s easier to start with a function oriented program for most problems that are ill-specified because you can easily and quickly represent types using lightweight data types and start doing useful things with them. with object oriented approaches, particularly with statically typed ones like java, it often feels like there’s a much higher startup cost to expressing the program because before you can even get to defining any useful behavior, you have to define some set of classes (which are far more rigid and hard to change than more primitive data structures).
A common task I use for react is rendering large datasets in the UI. For example, a large list of movies or books. Here’s a simple component that renders a list of movies.
As long as you’re using a unique `key` attribute in this case, renders are pretty fast. In the example above, only simple list items are being rendered for each movie. It’s a small set of elements and there’s no complex state involved.
But what if…
The individual movie items are a lot more expensive to render and contain a lot of state
The state cannot be localized to the smaller child components and needs to live at the root level (because it’s shared with other components)
Here’s an example where we have a parent level state that maintains rating data and passes that down to render both the movie list and a sibling recommendations component.
In this case, if setMovieRatings gets called in any of the children ExpensiveMovieItem components, the parent state will update and all of its children will re-render (even if the props for the majority of components in the list stays the same). One common misunderstanding I had for a long time is that when props stay the same, a component does not re-render. In reality, any time a parent UI component state changes as a result of setState, all of its descendants re-render.
If this is a large list (1000+) items, this re-render can create noticeable lag. In this case, if the re-render takes 200ms, it’ll take 200ms between when a rating for a movie is updated to when it’s actually reflected in the UI. Since React does not care to skip re-renders automatically based on props, it’s up to you to tell it when to skip a full re-render for a component.
React.memo
React.memo is a function that accepts a component (and an optional prop comparison function) and returns another component. This new component has special memoization behavior that skips re-render based on either the built-in or user provided prop check.
Going back to the original example, here’s how you turn a normal expensive component into a memoized one:
Now if you update the parent state, only the children with changed props will render. This technique will work out of the box if all of your props are non-object primitives (strings, numbers), but you’ll have to be more careful if you have objects because the default comparison method is using Object.is, and it’s pretty common for the identity of objects to change across re-renders in React even if the literal values are the same. For example, if you’re re-creating functions that are being passed in as props then you’ll cause a re-render. Or if you’re doing object cloning in setState which creates new objects with the same values but different identities. You can get around these issues by either simplifying the prop params or providing a custom property checker.
i’ve had a lot of JWT related discussions at work lately and today I wondered how big is too big for a JWT to fit through an HTTP header. The HTTP spec doesn’t really impose a limit but most servers do set a limit that range between 8K – 16K bytes.
I figured I can whip up a quick jwt generator to get a rough sense of how big JWT’s can get!
for simplicity I made the key value pairs small strings (these will vary in real life of course) and defined a byte limit of 8K. Also to save battery I increased the key counts exponentially 😀
ok here’s the script. can you guess what the key limit is using back of napkin calc?
chrome is planning on phasing out support for third party cookies in 2024.
Third-party cookies, also known as cross-site cookies, are cookies set by a website other than the one you are currently on. For example, cnn.com might have a Facebook like button on their site. The like button will set a cookie that can be read by Facebook.
these cookies are a big deal for big tech because they’re the primary enabler of web tracking and advertising. if you work for a tech company that relies on digital ads, chances are they depend on third party cookies for those ads to follow you around the web.
cookie basics
when a browser issues a request to example.com, example.com can set a cookie on the browser under the domain example.com by responding to the request with a set-cookie response header.
once the cookie is saved, if the browser makes additional requests to example.com again in the future, the cookie under the matching domain will be forwarded back to the server.
because HTTP is a stateless protocol, it’s this cookie behavior that allows websites to “remember” its clients.
now, whether a cookie is first party or third party depends on the domain you’re currently on. if the cookie domain is the same as the current domain you’re on (in your browsers address bar), this is a first party cookie. The cookie belongs to the domain. every other cookie set by other domains is third party. so whether a cookie is first party or not depends on two things:
The domain of the cookie
The current domain of the page
if i’m on example.com, all the cookies set under example.com are first party. the browser may contain other cookies, saved under other domains like yahoo.com or wikipedia.org. those are all third party!
so from a user perspective, a cookie isn’t first party in an absolute sense. if the user visits a different site under a different domain, the same cookie is no longer considered first party. so again, the site you’re currently on according to the browser determines whether a cookie is considered first party or third party.
issue with third party cookies
so remember how a website can set cookies under its own domain? well, turns out they can also indirectly set cookies under other (third party) domains! all thanks to the magic of
HTML documents can contain many references / links to resources on other domains. every <img src...> or <link ...> or <script src...> is basically a GET request to another server that may live under different domains than the one you’re currently on!
those third party servers i.e myspace.com and xanga.com can also set cookies under their domain. the browser doesn’t really make a distinction between a request you made directly by typing in example.com in the address bar versus ones that are fired as a result of HTML rendering.
as a result, the same website you’re visiting transmits its own cookies AND cookies from other websites. some of those websites may even be… ad networks that set cookies for purposes of analytics and tracking.
this basic auto storage and transmission behavior of cookies combined with the hyperlinking nature of web sites is at the core of how ad tech works.
if you’re an advertiser, third party cookie data allows you to learn about visitor behaviors, such as websites they frequently visits and recent purchases and target them with ads
real world scenario time
here’s a real example that i’ve researched and verified myself.
hypothetically speaking, lets say bob is researching a rice cooker on amazon.com. bob sees one he likes, but feels overwhelmed so gives up and decides to go bake cookies instead
bob then visits a site with a cookie recipe and sees an advertisement for the same rice cooker he was looking at earlier. since bobs not on an amazon-owned site but is seeing amazon related ads, this advertisement was triggered by a transmission of third-party cookie data.
the third party domain in this case is amazons advertising network. amazon has an advertising network similar to Google’s doubleclick.
here’s an example of a real cookie that’s set by the ad network when you visit amazon.com:
when a page on amazon loads, it makes additional requests to the amazon ad network. the ad network sets this very long-lived cookie (at the time of writing, that date is more than 4 years into the future) that will be used to track your behavior. for the next 4 years, this cookie data will be forwarded to any request to the amazon ad networks domain .amazon-adsystem.com.
a quick aside about ad networks
there’s three primary groups involved in an ad network
sellers that have something to sell (companies selling rice cookers on amazon.com) and want their products to be advertised as widely and cheaply as possible and
those who want to make money by showing ads (content creators, bloggers, etc). amazon calls those that want to show ads through their web content associates.
consumers / buyers / site visitors
the value of an ad network is proportional to the size of these groups. if there are no consumers or buyers, there’s nobody to sell to. if there are no content creators / youtubers, ads are limited in their reach. if there are no sellers… well, then there are probably no ads either!
back to bob
now that the third party cookie from the ad network is set, when bob visits a recipe site that’s also part of the ad network, he’s going to load a third party tracking script (also known as pixels) from .amazon-adsystem.com that receives the cookie that’s set, looks up the user by ID on the amazon servers, and serves a targeted ad based on the information the ad network has on the user identified by the cookie.
over time, these scripts loaded by sites that are affiliated with the ad network continue to track bobs behavior through the long lived cookie for as long as they’re loaded and transmit the data back to the ad network. this builds a rich representation of bob as a consumer for re-targeting purposes.
with the “end” to third party cookies, this basic mechanism is threatened. the recipe site will be restricted to only transmitted first party (its own) cookies. cookies previously set by an ad network (from a users visit to amazon.com properties) will not be transmitted behind the scenes for ad retargeting.
i should mention that most browsers do give you the option now of disabling third party cookies. yes even chrome. here’s what i see if i click into my chrome settings. as you would expect, third party cookies right now are allowed by default. i recommend turning that off.
so no more ads following me around in future?
while this looks like a positive direction for data privacy, it’s definitely not the end for ad retargeting. remember that big tech makes an ungodly amount of money from their advertising platforms and it’s not in their interest to kill their golden goose.
the current google led proposal to replace third party cookies in chrome is called the privacy sandbox initiative. a major part of this initiative is to offer users more control over how their data gets shared. i’m going to be reading more on this in the future and write about it on another post.
JSON Web Tokens (JWTs) are cryptographically signed JSON objects. The crypto signing is what provides the trust guarantees since consumers of a JWT can verify the signature using a public key. Now there’s two types of JWT’s: stateful and stateless jwt’s.
Stateless JWT’s are probably the most common JWT. All the information needed by the application about an entity is contained in the JSON (username, role, email, etc). When a stateless JWT is transmitted in a request either via cookie or header, the application base64 decodes the JWT, verifies the signature and takes some sort of action.
Stateful JWT’s contain a reference to information about an entity that is stored on the server. This reference is typically a session ID that references a session record in storage. When this JWT is transmitted to the backend, the backend performs a lookup in storage to get the actual data about the entity.
There’s almost no good reason to use stateful JWT’s because they are inferior in almost every way to regular session tokens:
Both session tokens (simple key-value string pair) and JWTs can be signed and verified by the server, but that whole process is simpler (and more battle-tested) with session key value pairs compared to JWT’s which involve an additional decoding step as well as plucking keys out of the decoded JSON for the verification step. Since most applications rely on third party JWT libraries to handle this (and they greatly vary in their implementation and security), this further increases the vulnerability of JWTs.
Encoding a simple string in JSON adds additional space usage. There’s nothing to be gained from this extra space if you’re just transmitting a single value.
Stateless JWT’s from my experience are most commonly used in service-oriented and microservice architectures where there are some collection of backend services and frontend clients. There’s typically a central authentication service that talks to a database with user information. Client requests from the frontend are authenticated with this service and receive a JWT in return. They may also need to communicate with backend services that are behind access control, so they pass along the stateless JWT as a bearer token in an HTTP header. The backend service verifies the JWT and uses the claims information to make an authz decision.
The reason why this is a popular flow is that teams are able to act on the JWT without having to perform an additional lookup about the entity at a user service. They do have to verify the JWT, but they don’t need to maintain any additional state about the user or communicate with another service. This level of trust only works because JWT’s are digitally signed by an issuing party (in this case, the auth server). If clients are just passing plain JSON requests, there’s no way for services to verify the integrity of the information (has it been tampered with?) or the source (how can i be sure it’s issued by the auth server?).
jwt as session
One common argument against the use of stateless JWT’s is when they’re used as sessions. The application basically offloads session expiry mechanism entirely to the JWT. The two strongest arguments i know of against using jwt’s as sessions are around data freshness and invalidation.
If you’re using a stateless JWT as a session, the only way to really expire a JWT is to set a new JWT on a client with an expiry in the past or change the issuing key (which invalidates all sessions). Fully client-side cookie sessions have similar limitations around invalidation. Data freshness is another related issue – when invalidation is hard, so is updating. If you need to revoke permissions, you can’t really do that without updating the JWT. But again, you can’t do that if you’re relying on the client-side state of a JWT for session management.
jwt tokens are a very popular way of transmitting claims information between systems. It’s based on a public key system so that the claims can be verified and the verifier can be confident that the claim was issued by a trusted entity.
microservice architectures will commonly use the claims to perform access control. For example, the claim may contain a users ID and their roles. This information can then be used to allow or deny access to resources.
One question that inevitably comes up when implementing JWT flows is:
How can I be sure that this JWT isn’t fake? How do I know it’s not tampered with??
if you don’t verify the signature, you really can’t be sure. JWT tokens contain a “signature” which is the output of a cryptographic hashing algorithm such as RS256. The issuer of the token will hash the header and payload of the JWT using a one way hash. This hashed output is then encrypted using a secret and then the final output gets stored inside the token. So what gets stored is an encrypted signature. If anything about the contents of the JWT changes, the signature will change.
on the receiving side, the only way to trust the token is to verify the signature. First, the signature in the claim needs to be decrypted using a public key (this is usually made available by the issuer). If you can successfully decrypt this value then you can be confident that the token was issued by the trusted party. However, at this point you haven’t verified if the contents have been tampered with / changed.
to verify that the integrity of the actual payload, you need to perform the same hash on the header and payload and compared the hashed output to the claim signature. If they match, you now have confidence that the claims were not tampered with! So there’s two levels of verification that happen. The first is the successful decryption of the claim. If decryption fails, the claim must not have been issued by the trusted party. For example, if I generated a JWT using some random secret key, it can only be decrypted by a specific public key. If I don’t share this public key with another party, they cannot trust me. So if a service is unable to decrypt using the public key it has, it cannot establish trust.
by the same token (hehe), if the verification of hashes fail, it’s possible that the token was issued by a trusted party but the contents of the JWT changed or does not match what was used to generate the original signature. This is a sign of tampering – either by another party or even by accident by the JWT consuming service (perhaps there’s a bug in the signature verification code).
reflected XSS attacks are a common way of tricking a users browser agent into executing malicious code. I’ll share onedefinition I found from mozilla and unpack the key terms / concepts.
When a user is tricked into clicking a malicious link, submitting a specially crafted form, or browsing to a malicious site, the injected code travels to the vulnerable website. The Web server reflects the injected script back to the user’s browser, such as in an error message, search result, or any other response that includes data sent to the server as part of the request. The browser executes the code because it assumes the response is from a “trusted” server which the user has already interacted with.
there’s a few key phrases here that are important to understanding XSS:
malicious link – this is the link sent by the attack to a user of a web service. Lets assume you’re the user and the service is my-bank.com. This link may look like “my-bank.com?alert=<script>… malicious code …</script>” which contains code that the attacker wants to execute on your browser.
malicious site – this is a site owned by the attacker. A malicious site doesn’t need to exist for an attack to happen, but it’s one place an attacker can get you to submit details that they can use to construct a scripted attack. For example, lets say they need your email address to perform an attack. The site might have a fake form that collects your email address and then redirects you to “my-bank.com” with an embedded URL script.
vulnerable website – this is the site that is vulnerable to XSS attacks. In general, that includes any site that doesn’t escape / sanitize inputs from the client. The problem with this is that it can lead to the browser agent executing user provided (via an attacker) javascript.
web server – this is the bank services backend service
“trusted” server – this is the bank server that returned the HTML containing malicious code that the users browser executed. Trusted is in quotes here because the server is returning javascript that it did not intend to. So it can’t really be trusted.
XSS attacks take advantage of:
A web service that liberally accepts user provided inputs (an attacker can replace a safe input with client code) and renders that input without sanitization (permits arbitrary code execution via injected script tags)
An established trust between the user agent and the web service. Any malicious code may execute in the context of an established session between the user and the service. For example, the user may be logged in and therefore all requests originating from the page (which will contain auth related cookies like session cookies) are trusted by the backend.
An unsuspecting user that blindly clicks a link (perhaps emailed to them) or fills out a form on a malicious website
err how is this different from stored XSS?
the only difference between reflected XSS and stored XSS is that with stored XSS, the malicious code is actually stored on the vulnerable web services servers. For example, lets say twitter is the vulnerable website and you’re a twitter user. Now lets assume you’re following someone who’s an attacker and they submit a tweet containing malicious code that they know will be executed by browser agents when it gets rendered, say, in the newsfeed of followers.
so here’s how it goes down – they submit the tweet containing script code. That tweet gets stored on the twitter servers (this is where the word “stored” comes from). That tweet will be rendered in users news feeds and when it does, the contents of the tweet gets executed as javascript. Boom, that’s the XSS attack. Just like reflected XSS, this can be prevented by ensuring that user input (in this case, tweets) is sanitized.
eric brewer presented CAP at a distributed computing conference in 2000 to designers of distributed systems, most of whom were familiar with relational databases and their consistency guarantees. His intention was to start the conversation about trade-offs in the system design space that need to be made between consistency and availability for early cloud-based storage systems that needed to be highly available. His main argument was that systems that for cloud storage systems to be highly available, some level of consistency needed to be sacrificed.
most developers like myself are using distributed systems – not designing them. more importantly, i find that i’m often required to think about app data usage patterns and how their storage system supports those usage patterns at levels far more granular than what CAP offers. as a distributed systems user, CAP can basically be reduced to “there’s a trade-off between availability and consistency”. that’s a concept that i find much easier to digest on its own
more useful questions / concepts than CAP to grapple with are…
is replication synchronous or asynchronous? Is this adjustable?
In the event of node or network failures, what is the data recovery process like? what writes get rolled back?
is there support for transactions? what level of isolation is supported (are dirty reads possible?)
can I read my own writes?
how do I scale reads and writes as my system grows? what does the process of adding additional nodes to the system look like?
how are concurrency conflicts handled / when there is contention over shared data?
one misconception of mongos read concern: majority is that it guarantees read-your-write consistency by reading from a majority of nodes. this is a common misunderstanding because it’s counterpart write concern: majority requires acks from the majority of nodes.
… but that’s not at all what read concern does!
reads always get submitted to a single node using a server selection process that takes into account your read preference (primary, primaryPreferred, secondary, etc).
if you have a primary read preference, a read will always go to the primary.
if you have a secondary read preference, a read will get submitted to a single secondary. if you have two replicas, a read goes to one of them
when the read concern (not the same as read preference, great naming mongodb) is set to majority, that’s basically saying “only return data for this query that has been committed / successfully written to the majority of nodes”.
this does not mean that you’re always reading the latest write
to understand this, you need to understand mongo’s notion of a “majority commit”.
the majority commit value for any write is determined by the primary during the standard replication process. when data gets replicated to a secondary node, it’ll check with the primary whether to update it’s “majority commit” snapshot of the data. If that value has not been majority committed, the majority commit snapshot will maintain its previous majority committed value.
that’s why it’s still possible to read stale values with read: majority. The majority commit snapshot on any given node is only updated for a particular value when it is actually successfully replicated from the primary to the majority of its secondary nodes. so the node you’re reading from may not have the majority-committed version of the data you literally just wrote. it’ll give you the previous majority committed value, instead of the latest value that perhaps has not yet propagated to the majority of nodes.
errr so what’s the point even MONGO
what it does mean is that you can trust that the data you’re reading has a high level of durability because in the event of a failure the value you’re reading is unlikely to be rolled back since it’s been majority committed.
read your own writes for real
reading your own writes is a special case of causal consistency and while having a majority read concern is not sufficient, it is a necessary component of setting up read your own write consistency in mongo.
to achieve reading your own writes, you need to ensure the following mAgiCaL settings:
why do you need to set specific read and write concerns even though causal consistency is enabled? I’m not sure, but it’s an extremely confusing and misleading API
theoretically/formally speaking… causal consistency includes read your own writes consistency, but in MongoDB enabling causal consistency is not sufficient for reading your own writes!
if you do have these settings on, MongoDB will track operations with a global logical clock and your reads will block until it’s able to read the most recent majority committed write from the same session.
without causal consistency enabled, a write may go to a majority of nodes but the read may still would up returning non-majority-committed data from a node that does not have the write that just happened in the same session. The causal consistency session is what causes reads to block if it attempts to read a stale write.
wow this sounds painful what are my other options
situations involving multi-document operations are most likely going to bring up requirements around read/write consistency. the best way to skip all that is to use mongo / nosql as it was designed and focus on single document, atomic operations that do not require you to interleave read and writes. this means modeling your data in a de-normalized way and not treat mongo too much like a relational db. it’s actually what they recommend too!